

FUNDACIONES SOBRE MEDIOS ELÁSTICOS PARTE 3

CARACTERIZACION DE PARÁMETROS DEL SUELO

Prof Ing. Roberto Terzariol Prof. Dr. Ing. Marcelo Zeballos Prof. Dr. Ing. Guillermo Gerbaudo Prof. M. Sc. Ing. Pedro Covassi

Universidad Nacional de Córdoba

PARAMETROS DEL SUELO

PLATEAS RÍGIDAS

- Parámetros de resistencia para cálculo de carga de hundimiento
- Parámetros deformacionales para cálculo de asentamiento

PLATEAS FLEXIBLES

- Parámetros de resistencia para cálculo de carga de hundimiento
- Parámetros deformacionales para cálculo de asentamiento

$$\lambda = \sqrt[4]{\frac{kB}{4E_c}}$$

Prof. Dr. Ing. Marcelo Zeballos Prof. Dr. Ing. Guillermo Gerbaudo Prof. M. Sc. Ing. Pedro Covassi

PARAMETROS DEL SUELO MÓDULO DE REACCION

Definición:

Relación entre la tensión capaz de generar una penetración de la placa determinada.


Calculado a partir de la curva q v obtenida del ensayo del plato de car

$$K = q/\delta$$

q = presión de contacto

K = módulo de balasto

 δ = asentamiento medio

PARAMETROS DEL SUELO MÓDULO DE REACCION

Definición:

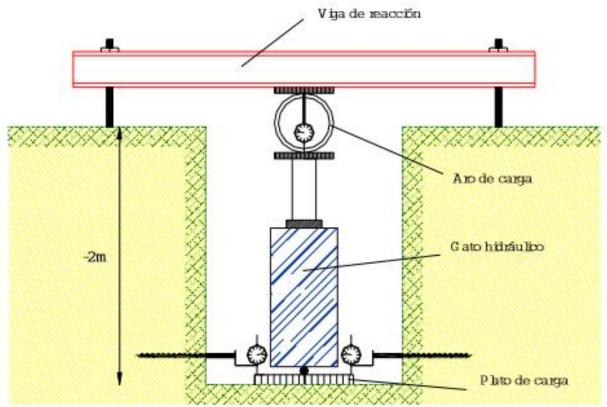
Relación entre la tensión capaz de generar una penetración de la placa determinada.

Calculado a partir de la curva q vs δ obtenida del ensayo del plato de carga

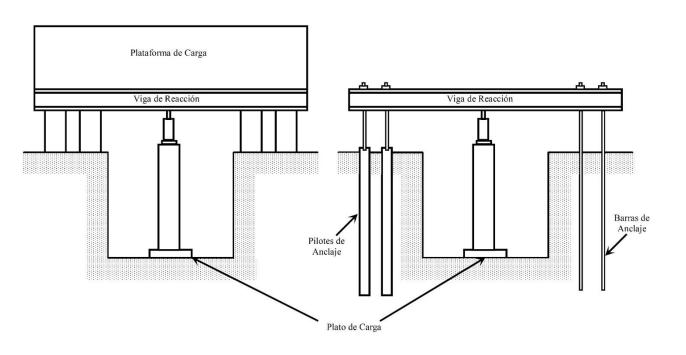
$$K = q/\delta$$

q = presión de contacto K = módulo de balasto

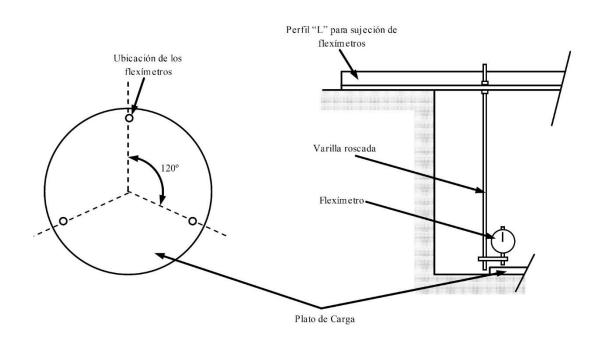
 δ = asentamiento medio

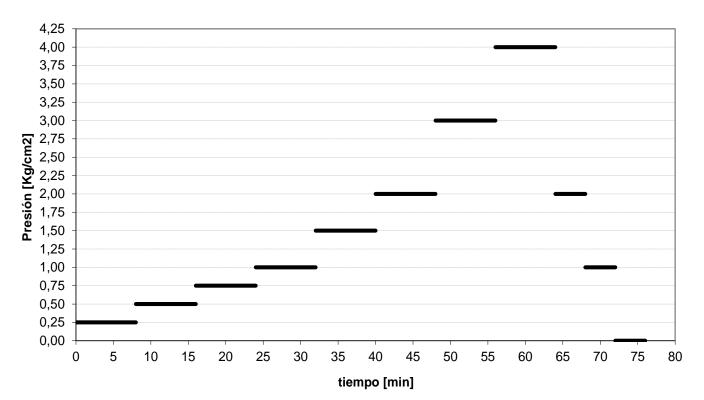

Interpretación según medio elástico continuo

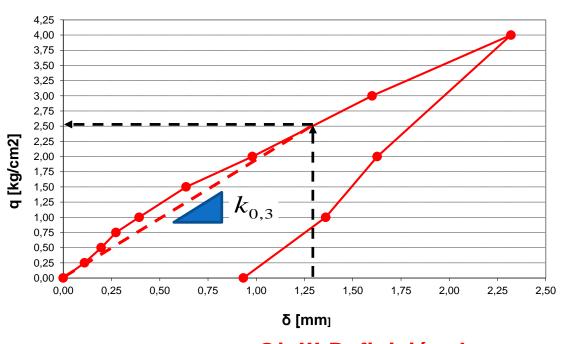
Universidad Nacional de Córdoba

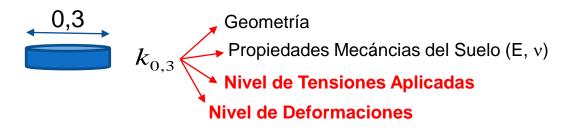

$$\delta = \frac{qB}{E}(1 - v^2)I$$

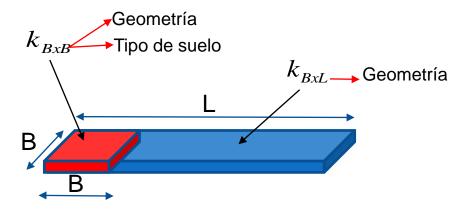
$$k = \frac{q}{\delta} = \frac{E}{B(1 - v^2)I} = \alpha \frac{E}{B}$$








CURVA CARGA DEFORMACIÓN DEL ENSAYO DEL PLATO DE CARGA



Ojo!!! Definición de Asntamiento Arbitraria!!!!

APLICACIONES DE LOS RESULTADOS EN EL DISEÑO

Universidad Nacional de Córdoba

CURVA CARGA DEFORMACIÓN DEL ENSAYO DEL PLATO DE CARGA

PRINCIPALES PROBLEMAS

- El suelo no es perfectamente elástico y los resultados están afectados por la magnitud de la presión y deformación.
- Tamaño de la base afecta el valor (B30)
- La forma también (placa circular base cuadrada)
- Estratificación del suelo y otros cambios en profundidad pueden no ser mostrados en el ensayo con el pequeño plato (perfil geotécnico)

MODULO DE REACCION

EFECTO DEL TAMAÑO

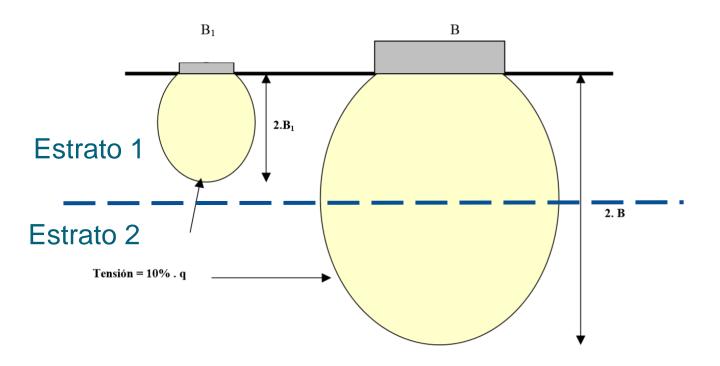
Suelos Arcillosos

Suelos Arenosos

Universidad Nacional de Córdoba

Bases Cuadradas (BxB)

$$k_{BxB} = k_{0,3} \left(\frac{0,3}{B} \right)$$


$$k_{BxB} = k_{0,3} \left(\frac{B + 0,3}{2B} \right)^2$$

Bases Rectangulares (BxL)

$$k_{BxL} = \frac{k_{BxB} \left(1 + \frac{B}{L} \right)}{1.5}$$

MODULO DE REACCION INFLUENCIA DEL PERFIL

MODULO DE REACCION ADOPTADO

CONCLUSION

- EL MÓDULO DE BALASTO DE CALCULO NO ES UN PARÁMETRO
 "INTRÍNSECO" DEL SUELO → ESTA INFLUENCIADO POR LA
 FUNDACIÓN.
- **DEPENDE** DE:
 - LA RIGIDEZ DEL SUELO,
 - <u>RIGIDEZ DE LA LOSA (PLACA) Y LA GEOMETRÍA DEL PROBLEMA (TAMAÑO DE FUNDACIÓN RESPECTO DE LA ESTRATIFICACIÓN DEL SUELO)</u>.

DETERMINACION DEL MODULO DE REACCION

SUELOS FRICCIONALES

SOIL CHARACTERISTIC		*Modulus of Subgrade Reaction (k) in kg/cm 3	
Relative Density	Standard Penetration Test Value (N)	For Dry or Moist State	For Submerged State
(1)	(2)	(3)	(4)
Loose	< 10	1.5	0.9
Medium	10 to 30	1.5 to 4.7	0.9 to 2.9
Dense	30 and Over	4.7 to 18.0	2.9 to 10.8

PARAMETROS DEL SUELO MÓDULO DE REACCION

Arena (seca o húmeda)

Suelta: 29-92 lb/pulg³ (8-25 MN/m³)

Media: 91-460 lb/pulg3 (25-125 MN/m3)

Densa: 460-1380 lb/pulg³ (125-375 MN/m³)

Arena (saturada)

Suelta: 38-55 lb/pulg³ (10-15 MN/m³)

Media: 128–147 lb/pulg³ (35–40 MN/m³)

Densa: 478-552 lb/pulg3 (130-150 MN/m3)

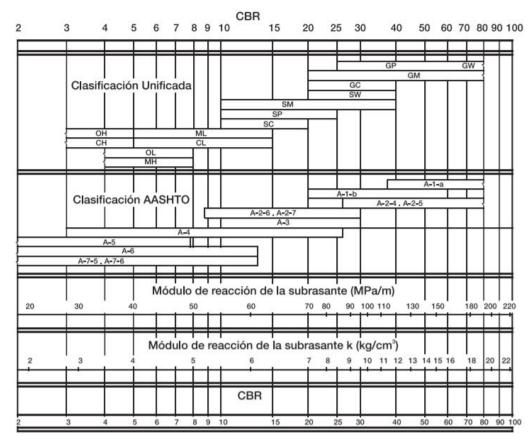
Arcilla

Rígida: 44-92 lb/pulg³ (12-25 MN/m³)

Muy rígida: 92–184 lb/pulg³ (25–50 MN/m³)

Dura: >184 lb/pulg³ (>50 MN/m³)

DETERMINACION DEL MODULO DE REACCION


SUELOS COHESIVOS

Soil Ch	SOIL CHARACTERISTIC	
Consistency	Unconfined Compressive Strength, kg/cm ²	Reaction (K_s) in kg/cm 3
(1)	(2)	(3)
Stiff	1 to 2	2.7
Very stiff	2 to 4	2.7 to 5.4
Hard	4 and over	5.4 to 10.8

*The values apply to a square plate 30 × 30 cm. The above values are based on the assumption that the average loading intensity does not exceed half the ultimate bearing capacity.

MODULO DE REACCION

