Universidad Nacional de Córdoba

Facultad de Ciencias Exactas, Físicas y Naturales

Termodinámica Química

"Diagrama P – XY de Propano + Pentano utilizando Peng Robinson"

Profesor: Juan Milanesio

Ayudantes Alumnos:

- Bruno, Lucas.
- Lencina, Julián.
- Odetti, María Sol.
- Sosa, María Virginia.

Diagrama P – XY de Propano + Pentano utilizando Peng Robinson

⇒ Teórico

Para poder entender cómo se resuelve este ejercicio, es necesario repasar la teoría necesaria para ello.

Criterio de Isofugacidad

Para cada componente i, en cada punto, se cumple:

$$\ln(\varphi_i^L) - \ln(\varphi_i^V) = 0$$

Donde:

$$\ln(\varphi_i) = \ln(x_i) + \ln(\varphi_i) + \ln(P)$$

Combinados:

$$\{\ln(x_{i}^{L}) + \ln(\varphi_{i}^{L})\} - \{\ln(x_{i}^{V}) + \ln(\varphi_{i}^{V})\} = 0$$

Falta explicar el parametro de interaccion binaria

Diagrama P – XY de Propano + Pentano utilizando Peng Robinson

Paso a paso

⇒ Parte A

Para comenzar es necesario descargar la plantilla de Excel "Peng_Robinson_Px-y Pentano+Propano". Al abrirla se encontrarán con la siguiente area de trabajo:

	Α	В	С		E		F	G	Н		J	K
1		Propano(1)	n-Pentano (2)									
2	Тс(К)	369,8	469,7		R (bar.cm3/(mol.	K)) 8	83,14					
3	Pc(bar)	42,5	33,7		Temperature (M	9	350					
4	omega	0,152	0,252									
5	kij	0,0	0,0									
6		0,0	0,0									
8												
9		Li	quido		Vapor		Liqu	ido		Vapor	Liqu	ıido
10	Presicn (bar)	x1	x2	y1	y2		φ1(L)	Inφ2(L)	Inφ1(V)	Inφ2(V)	f1(L)	f2(L
11	3,50 3											
12	5,050											
13	8,0002											
14	11,0166											
15	14,0047											
16	17,1052											
17	19,8736											
18	23,0898											
19	26,4286											
20	28,9982											
		7										
1	A		B		С		R (bar.	cm3/(mol.K)))	83,14		
			Propano(1) n-P	entano (2)		Тетр	erature (K)		350		
	Tc(K)		369,8		469,7							
	Pc(bar	1	42,5		33,7							
	omega	а	0,152		0,252							
	kij		0,0		0,0							
			0,0		0,0							

Las tablas mostradas contienen los datos de Temperatura crítica, Presión crítica, omega, parámetros de interacción binaria de cada compuesto y los valores de la constante de los gases y temperatura de trabajo.

Para comenzar el proceso de iteración necesitamos dar valores de las composiciones, tanto del líquido como del gas, del propano y el pentano.

8				
9		Liq	uido	
10	Presión (bar)	x1	x2	
11	3,5033	0,100	=1-B11	_
12	5,0501	0,200	ľ	
13	8,0002	0,300		
14	11,0166	0,400		
15	14,0047	0,500		
16	17,1052	0,600		
17	19,8736	0,700		
18	23,0898	0,800		
19	26,4286	0,900		
20	28,9982	1,000		
21				

Para llenar la columna x2 podemos insertar la función = 1 - B11 y luego arrastrar el cuadrado negro (esquina inferior derecha) hacia abajo para autor rellenar el resto de la columna, manteniendo la misma función.

8				1					
9		Lia	uido	8					
-		Liqu		9		Liqi	uido		Vapor
10	Presión (bar)	x1	x2	10	Presión (bar)	x1	x2	y1	y2
11	3,5033	0,100	0,900	11	3,5033	0,100	0,900	0,900	0,100
12	5,0501	0,200	0,800	12	5,0501	0,200	0,800	0,800	0,200
13	8,0002	0,300	0,700	13	8,0002	0,300	0,700	0,700	0,300
14	11,0166	0,400	0,600		11,0166	0,400	0,600	0,600	0,400
15	14,0047	0,500	0,500		14,0047	0,500	0,500	0,500	0,500
16	17,1052	0,600	0,400	16	17,1052	0,600	0,400	0,400	0,600
17	19 8736	0,700	0,300	17	19,8736	0,700	0,300	0,300	0,700
10	22,0000	0,000	0,000	18	23,0898	0,800	0,200	0,200	0,800
10	23,0898	0,800	0,200	19	26,4286	0.900	0,100	0,100	0,900
19	26,4286	0,900	0,100	20	28 9982	1,000	0.000	0,000	1,000
20	28,9982	1,000	0,000	21		.,500	,500	2,500	.,200
21				22					

Una vez completadas las composiciones podemos empezar a calcular los Ln (Φ) del líquido y el vapor. Para ello seleccionaremos las celdas de los coeficientes de fugacidad de la fase liquida de ambos compuestos.

Y	V Copiar rormato	_			· · · _		condi	cional + cor
	Portapapeles 🕞	Fuent	e G		Alineación	Fai	Número 🕞	E
	F11 •	f _x						
	А	В	С	D	E	F	G	
1		Propano(1)	n-Pentano (2)					
2	Tc(K)	369,8	469,7		R (bar.cm3/(mol.K))	83,14		
3	Pc(bar)	42,5	33,7		Temperature (K)	350		
4	omega	0,152	0,252					
5	kij	0,0	0,0					
6		0,0	0,0					
7								
8								
9		Liq	uido		Vapor		Liquido	
10	Presión (bar)	x1	x2	y1	y2	lnφ1(L)	Inφ2(L)	In
11	3,5033	0,100	0,900	0,900	0,100			
12	5,0501	0,200	0,800	0,800	0,200			-y
13	8,0002	0.300	0 700	0.700				
14			0,100	0,700	0,300			
	11,0166	0,400	0,600	0,700	0,300 0,400			
15	11,0166 14,0047	0,400 0,500	0,600 0,500	0,700 0,600 0,500	0,300 0,400 0,500			
15 16	11,0166 14,0047 17,1052	0,400 0,500 0,600	0,600 0,500 0,400	0,700 0,600 0,500 0,400	0,300 0,400 0,500 0,600			
15 16 17	11,0166 14,0047 17,1052 19,8736	0,400 0,500 0,600 0,700	0,600 0,500 0,400 0,300	0,700 0,600 0,500 0,400 0,300	0,300 0,400 0,500 0,600 0,700			
15 16 17 18	11,0166 14,0047 17,1052 19,8736 23,0898	0,400 0,500 0,600 0,700 0,800	0,600 0,500 0,400 0,300 0,200	0,700 0,600 0,500 0,400 0,300 0,200	0,300 0,400 0,500 0,600 0,700 0,800			
15 16 17 18 19	11,0166 14,0047 17,1052 19,8736 23,0898 26,4286	0,400 0,500 0,600 0,700 0,800 0,900	0,600 0,500 0,400 0,300 0,200 0,100	0,700 0,600 0,500 0,400 0,300 0,200 0,100	0,300 0,400 0,500 0,600 0,700 0,800 0,900			
15 16 17 18 19 20	11,0166 14,0047 17,1052 19,8736 23,0898 26,4286 28,9982	0,400 0,500 0,600 0,700 0,800 0,900 1,000	0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000	0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000	0,300 0,400 0,500 0,600 0,700 0,800 0,900 1,000			
15 16 17 18 19 20 21	11,0166 14,0047 17,1052 19,8736 23,0898 26,4286 28,9982	0,400 0,500 0,600 0,700 0,800 0,900 1,000	0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000	0,700 0,600 0,500 0,400 0,300 0,200 0,100 0,000	0,300 0,400 0,500 0,600 0,700 0,800 0,900 1,000			

Una vez seleccionadas introduciremos la siguiente función:

	Fu	ente G	Alineación
• (*	$X \checkmark f_x$	=prInphil(\$F\$2;\$F	\$3;A11; <mark>B11:C11;</mark> \$B\$2:\$C\$6)

Para poder fijar las celdas que no deben cambiar (\$F\$2) debemos apretar F4 luego de seleccionar la celda. Una vez cargada toda la función, no debemos apretar Enter, sino que debemos apretar Ctrl + Shift + Enter para habilitar la función.

	Portapapeles 🕞	Fuente	e G		Alineación	Gr Núm	ero G	
	SUMA 🔫 🤄	$X \checkmark f_x =$	orInphil <mark>(\$F\$2</mark> ;\$F	\$3;A11;B11:	C11;\$B\$2:\$C\$6)			
4	А	В	С	D	E	F	G	
		Propano(1)	n-Pentano (2)					
2	Tc(K)	369,8	469,7		R (bar.cm3/(mol.K))	83,14		
}	Pc(bar)	42,5	33,7		Temperature (K)	350		
Ļ.	omega	0,152	0,252					
5	kij	0,0	0,0					
5		0,0	0,0					
7								
}								
)		Liqu	uido		Vapor	Liqu	ido	
0	Presión (bar)	x1	x2	y1	y2	Inφ1(L)	Inφ2(L)	
1	3,5033	0,100	0,900	0,900	0,100	=prlnphil(\$F\$2;\$F\$3;	-0,127756057	[
2	5,0501	0,200	0,800	0,800	0,200			(
3	8,0002	0,300	0,700	0,700	0,300			

Una vez que realicemos esa accion obtendremos los valores de las dos primeras celdas. Para obtener el resto de los valores debemos arrastrar el cuadrado negro hacia la ultima celda.

7								
8								
9		Liqu	ıido		Vapor	Liqu	ido	
10	Presión (bar)	x1	x2	y1	y2	Inφ1(L)	Inφ2(L)	
11	3,5033	0,100	0,900	0,900	0,100	1,766569579	-0,127756057	
12	5,0501	0,200	0,800	0,800	0,200	1,397513329	-0,485288674	
13	8,0002	0,300	0,700	0,700	0,300	0,938754928	-0,929701074	
14	11,0166	0,400	0,600	0,600	0,400	0,620124499	-1,231698679	
15	14,0047	0,500	0,500	0,500	0,500	0,381159129	-1,451056066	
16	17,1052	0,600	0,400	0,400	0,600	0,18258202	-1,625874069	
17	19,8736	0,700	0,300	0,300	0,700	0,032908409	-1,745809252	
18	23,0898	0,800	0,200	0,200	0,800	-0,114332571	-1,85408781	
19	26,4286	0,900	0,100	0,100	0,900	-0,244391782	-1,929461924	
20	28,9982	1,000	0,000	0,000	1,000	-0,330911376	-1,921946118	
21								.
22								

Realizamos los mismos pasos con la fase vapor, pero ingresando la siguiente función:

 Fuente
 Allneacion

 f_x
 =prlnphiv(\$F\$2;\$F\$3;A11;D11:E11;\$B\$2:\$C\$6)

1										
8										
9		Liqu	uido		Vapor	Liqu	ido		Vapor	
10	Presión (bar)	x1	x2	y1	y2	lnφ1(L)	Inφ2(L)	Inφ1(V)	Inφ2(V)	
11	3,5033	0,100	0,900	0,900	0,100	1,766569579	-0,127756057			
12	5,0501	0,200	0,800	0,800	0,200	1,397513329	-0,485288674			Ţ.
13	8,0002	0,300	0,700	0,700	0,300	0,938754928	-0,929701074			
14	11,0166	0,400	0,600	0,600	0,400	0,620124499	-1,231698679			
15	14,0047	0,500	0,500	0,500	0,500	0,381159129	-1,451056066			
16	17,1052	0,600	0,400	0,400	0,600	0,18258202	-1,625874069			
17	19,8736	0,700	0,300	0,300	0,700	0,032908409	-1,745809252			
18	23,0898	0,800	0,200	0,200	0,800	-0,114332571	-1,85408781			
19	26,4286	0,900	0,100	0,100	0,900	-0,244391782	-1,929461924			
20	28,9982	1,000	0,000	0,000	1,000	-0,330911376	-1,921946118			
21										
21										

	Portapapeles 🕞	Fuent	ie Fa		Alineación	5 Nún	nero 🕞	Estilos	Celdas	
	SUMA 👻 🤇	N ✓ f _x =	prlnphiv <mark>(\$F\$2</mark> ;\$	F\$3;A11;D11	:E11;\$B\$2:\$C\$6)					
. Al	Α	В	С	D	E	F	G	Н	l I	
1		Propano(1)	n-Pentano (2)							
2	Tc(K)	369,8	469,7		R (bar.cm3/(mol.K))	83,14				
3	Pc(bar)	42,5	33,7		Temperature (K)	350				
4	omega	0,152	0,252			-	1			
5	kij	0,0	0,0							
6		0,0	0,0							
7										
8										
9		Liq	uido		Vapor	Liqu	ido		Vapor	
10	Presión (bar)	x1	x2	y1	y2	Inφ1(L)	lnφ2(L)	Inφ1(V)	Inφ2(V)	
11	3,5033	0,100	0,900	0,900	0,100	1,766569579	-0,1277560	057 1;\$B\$2:\$C\$6)		
12	5,0501	0,200	0,800	0,800	0,200	1,397513329	-0,4852886	674	Ī	
13	8,0002	0,300	0,700	0,700	0,300	0,938754928	-0,9297010)74		
14	11,0166	0,400	0,600	0,600	0,400	0,620124499	-1,2316986	679		
15	14,0047	0,500	0,500	0,500	0,500	0,381159129	-1,4510560	066		
16	17,1052	0,600	0,400	0,400	0,600	0,18258202	-1,6258740	069		
17	19,8736	0,700	0,300	0,300	0,700	0,032908409	-1,7458092	252	No ·	łα
18	23,0898	0,800	0,200	0,200	0,800	-0,114332571	-1,854087	81		
19	26,4286	0,900	0,100	0,100	0,900	-0,244391782	-1,9294619	924	olvida	s de
20	28,9982	1,000	0,000	0,000	1,000	-0,330911376	-1,9219461	118		5 00
21									anre	tar
22									upic	i Gi
									Ctrl +	Shift

	Portapapeles	Gi -	Fuent	ie G		Alineación	ta Núr	mero 🕞	Estilos	Celdas	
	H11	-	f _x {=	prInphiv(\$F\$2;\$	F\$3;A11;D11	:E11;\$B\$2:\$C\$6)}					
	А		В	С	D	E	F	G	Н		
1			Propano(1)	n-Pentano (2)							
2	Тс(К)		369,8	469,7		R (bar.cm3/(mol.K))	83,14				
3	Pc(bar)		42,5	33,7		Temperature (K)	350				
4	omega		0,152	0,252							
5	kij		0,0	0,0							
6			0,0	0,0							
7											
8											_
9			Lig	uido		Vapor	Liqu	iido		Vapor	
10	Presión (bar	r)	x1	x2	y1	y2	Inφ1(L)	Inφ2(L)	lnφ1(V)	lnφ2(V)	
11	3,5033		0,100	0,900	0,900	0,100	1,766569579	-0,127756057	-0,037	-0,084	
12	5,0501		0,200	0,800	0,800	0,200	1,397513329	-0,485288674			
13	8,0002		0,300	0,700	0,700	0,300	0,938754928	-0,929701074			
14	11,0166		0,400	0,600	0,600	0,400	0,620124499	-1,231698679			
15	14,0047		0,500	0,500	0,500	0,500	0,381159129	-1,451056066			
16	17,1052		0,600	0,400	0,400	0,600	0,18258202	-1,625874069			_
17	19,8736		0,700	0,300	0,300	0,700	0,032908409	-1,745809252			
18	23,0898		0,800	0,200	0,200	0,800	-0,114332571	-1,85408781			
19	26,4286		0,900	0,100	0,100	0,900	-0,244391782	-1,929461924			_
20	28,9982		1,000	0,000	0,000	1,000	-0,330911376	-1,921946118			
21											
	_			Lia	uido			Vanor			
	_	_	-	14/12			1-1400	Vapor	3.0		
	_		In	φ1(L)		nφ2(L)	Inφ1(V)	In¢2	(V)		
			1,76	6569579	-0,1	27756057	-0,037	-0,0	84	1	
			1,39	7513329	-0,4	85288674	-0,053	-0,1	27	4	
			0,93	3754928	-0,9	29701074	-0,082	-0,2	11	6	
			0,62	0124499	-1,2	31698679	-0,108	-0,3	10	8	
			0.38	1159129	-1.4	51056066	-0.123	-0.4	29		

-6,000 11010 -6,202 -2,100		/3/ / ////	
	 11370 -1,321340110 -4	202 -2,100	

-1,625874069

-1,745809252

0,18258202

0,032908409

0,202

0,071

-1,646

-1,790

Ahora tenemos todos los datos necesarios para calcular las fugacidades de ambos compuestos en la fase liquida y vapor, utilizando la siguiente fórmula:

		-	-		
	<i>f</i> _x =	A11*C1	1*EXP(G11	.)	
- sence		,			
<i>f</i> _x =A11*	B11*EXP(F11)				
-	G	Н	1	J	
,14 50					
Liqu	iido		Vapor	Liqu	uido
1(L)	Inφ2(L)	Inφ1(V)	Inφ2(V)	f1(L)	
69579	-0,127756057	-0,037	-0,084	2,049691754	2
13329	-0,485288674	-0,053	-0,127	4,085691515	2
54928	-0,929701074	-0,082	-0,211	6,136498145	
24499	-1,231698679	-0,108	-0,310	8,192628976	
59129	-1,451056066	-0,123	-0,429	10,25130703	1
58202	-1,625874069	0,202	-1,646	12,3189634	1
08409	-1,745809252	0,071	-1,790	14,37695302	1
332571	-1,85408781	-0,059	-1,929	16,47614441	(
391782	-1,929461924	-0,175	-2,051	18,62853386	(
911376	-1,921946118	-0,252	-2,133	20,82848117	

		Fuente	5	ă.	Alineación	Es.	Número	G.	Estilos		
		fx =A11*0	C11*EXP(G	;11)							
		F		G	Н	1		J	K		
	8	83,14									
		350									
		Linu	ido			lanar		Lie	wide		
		եղա 1111	Ind	2(1)	Ind1(\/)	Ind 2(\/)		f1(L)	f2(1)		
		6569579	_0 127	756057	-0.037	-0.084		2 049691754	2 774826878		
	1	7513329	-0 485	288674	-0.053	-0,004		4 085691515	2 486766702		
	2	8754928	-0,400	701074	-0.082	-0,121		6 136498145	2 21022894		
	2	0124499	-1 231	698679	-0.108	-0.310		8 192628976	1 92875897		
		1159129	-1 451	056066	-0.123	-0 429		10 25130703	1 640809991		
	2	3258202	-1 625	874069	0 202	-1 646		12 3189634	1,346109551		
	2	2908409	-1 745	809252	0.071	-1 790		14 37695302	1.040405892		
	1	4332571	-1 854	408781	-0.059	-1 929		16 47614441	0 723151845		
	4	4391782	-1 929	461924	-0 175	-2 051		18 62853386	0 383812842		
	3	30911376	-1.921	946118	-0.252	-2,133		20.82848117	0		
	=		.,		-,						
*	y copiar iormat	.0			· · · · -			condicional	como tabla	* * *	
	Portapapeles	5	Fuente	Fa	Alineación	Γ ₃	Número	Eg.	Estilos	Celdas	
	L11	• (=	‰ =A11*D	11*EXP(H11)							
1	E	F		G	H			J	K	L	
2	R (bar cm3/(mol k	KU 83 1	14								
3	Temperature (K)	35	0								
4											
5											
6											
7											
8 0	Vapor		Liqui	do		Vapor		Lia	uido		Vanor
10	v2	Ino1	(L)	Ind2(L)	Ino1(V)	Ind2(V)		f1(L)	f2(L)	f1(V)	Vapor
11	0,100	1,76656	69579	-0,127756057	-0,037	-0,084		2,049691754	2,774826878	3,038704506	3
12	0,200	1,3975	13329	-0,485288674	-0,053	-0,127		4,085691515	2,486766702	3,832384468	3
13	0,300	0,93875	54928	-0,929701074	-0,082	-0,211		6,136498145	2,21022894	5,158329657	/
14	0,400	0,62012	24499	-1,231698679	-0,108	-0,310		8,192628976	1,92875897	5,930710173	3
15	0,500	0,38118	09129	-1,451056066	-0,123	-0,429		10,25130703	1,640809991	6,194/59158	5
10	0,000	0,1825	0202	-1,025874069	0,202	-1,646		12,3189034	1,340109551	8,3700136	
18	0,700	-0 1143	32571	-1,745003252	-0.059	-1,790		16 47614441	0 723151845	4.351613467	7
19	0.900	-0.2443	91782	-1.929461924	-0.175	-2,051		18.62853386	0.383812842	2.217665851	1
	1,000	0,2200	44070	1.001046140	0.252	2,001		20 020/0117	1,1111112012		-
20	1,000	-0,3309	11370	-1,921940110	-0,252	-2,100		20,02040117	U	0	

	i ortupupcies i a	Fuence	1.0	Anneactori		10 11	Latitos	celuus	mountai
	M11 -	(<i>f</i> _x =A11*6	E11*EXP(I11)						
	E	F	G	Н	I	J	K	L	M
1									
2	R (bar.cm3/(mol.K))	83,14							
3	Temperature (K)	350							
4									
5									
6									
7									
8									
9	Vapor	Liqu	ido		Vapor	Liqu	iido	Vapo	r
10	y2	Inφ1(L)	lnφ2(L)	Ino1(V)	Inφ2(V)	f1(L)	f2(L)	f1(V)	f2(V)
11	0,100	1,766569579	-0,127756057	-0,037	-0,084	2,049691754	2,774826878	3,038704506	0,321992072
12	0,200	1,397513329	-0,485288674	-0,053	-0,127	4,085691515	2,486766702	3,832384468	0,889944899
13	0,300	0,938754928	-0,929701074	-0,082	-0,211	6,136498145	2,21022894	5,158329657	1,942669592
14	0,400	0,620124499	-1,231698679	-0,108	-0,310	8,192628976	1,92875897	5,930710173	3,232152293
15	0,500	0,381159129	-1,451056066	-0,123	-0,429	10,25130703	1,640809991	6,194759158	4,560914064
16	0,600	0,18258202	-1,625874069	0,202	-1,646	12,3189634	1,346109551	8,3760136	1,978441851
17	0,700	0,032908409	-1,745809252	0,071	-1,790	14,37695302	1,040405892	6,401466428	2,323775067
18	0,800	-0,114332571	-1,85408781	-0,059	-1,929	16,47614441	0,723151845	4,351613467	2,684481532
19	0,900	-0,244391782	-1,929461924	-0,175	-2,051	18,62853386	0,383812842	2,217665851	3,058702916
20	1,000	-0,330911376	-1,921946118	-0,252	-2,133	20,82848117	0	0	3,434273557
21									

Ahora calculamos la diferencia entre las fugacidades de cada compuesto en cada fase y sumamos toda la columna.

-	
Propano	Pentano
[f1(L)-f1(V)]	[f2(L)-f2(V)]
=J11-L11	

						∞ () □ ₽
entrar ∗	General ▼ \$ ▼ % 000 € 00 + 00 Número 52	Formato condicional y como Estil	ormato Estilos de tabla * celda * os	Insertar Eliminar Fo	ormato ▼ 2 Borra	suma * nar * or denar y filtrar * seleccionar * Modificar
				Suma (Alt+=)		
	Ν	0	P	3 6 5 5 =Σ()	Muestra la sum directamente d seleccionadas.	a de las celdas seleccionadas espués de las celdas
	Propano [f1(L)-f1(V)]	Pentano [f2(L)-f2(V)]	Suma	Suma (x1+x2)	Suma (y1+y2)	
2	-0,989012752	1				
9	0,253307047					
2	0,978168488					
3	2,261918802					
4	4,056547868					
1	3,942949798					
7	7,975486591					
2	12,12453095	-				
0 7	16,41086801	-				
<u>'</u>	20,82848117					
		<u></u>		_		

Propano	F	
[f1(L)-f1(V)]	[f2	
-0,989012752		
0,253307047		
0,978168488		
2,261918802		
4,056547868		
3,942949798		-
7,975486591		
12,12453095		
16,41086801		
20,82848117		
67,84324597		

Propano	Pentano	
[f1(L)-f1(V)]	[f2(L)-f2(V)]	
-0,989012752	2,452834806	3
0,253307047	1,596821803	
0,978168488	0,267559349	
2,261918802	-1,303393322	
4,056547868	-2,920104073	
3,942949798	-0,632332301	
7,975486591	-1,283369174	
12,12453095	-1,961329687	
16,41086801	-2,674890074	
20,82848117	-3,434273557	
67,84324597	-9,892476231	

Fuente	E .	Aline	ación		N	úmero 🕞	Estil	05	
fx =ABS(N11	.)+ABS(011)								
К	L		М			N	0	Р	
									1
									1
		Vapo	r		Р	ropano	Pentano	1	1
f2(L)	f1(V)		f2(V)		[f1	(L)-f1(V)]	$[f_2(L)-f_2(V)]$	Suma	Īs
74826878	3 038704	506	0.3219920)72	-0.9	89012752	2 452834806	3 441847558	Î
86766702	3 832384	468	0 8899448	399	0.2	53307047	1 596821803	0,111011000	Î
14000004	E 4E0000	0007	1.0406604	00	0,0	70400400	0.007550040		t
				♦					
			Propano	Pe	ntano				
	-]	f1(L)-f1(V)]	[f2(L	.)-f2(V)]	Suma	Sun		
	2	2 -0	,989012752	2,452	2834806	3,441847558			
	ę) 0	,253307047	1,596	6821803	1,85012885			
	2	2 0	,978168488	0,267	7559349	1,245727837			
	e	3 2	,261918802	-1,30	3393322	3,565312125			
	2	4 4	,056547868	-2,92	0104073	6,976651941			
	1	3	,942949798	-0,63	2332301	4,575282098			
	1		,975486591	-1,28	3369174	9,258855765			
	2	2 1	2,12453095	-1,96	1329687	14,08586063			
		0 1 7 0	6,41086801	-2,67	4890074	19,08575809			
	<u>1</u>		0,02040117	-3,43	42/300/ 2/76224	24,20210413			
		0	1,04324381	-9,69	24/0201	11,1301222			
							 +		

Ahora comenzamos a llenar la columna Suma ingresando la siguiente función:

Luego debemos sumar las fracciones molares de ambos compuestos en la fase liquida y en la fase vapor, insertando las funciones = x1 + x2 y = y1 + y2:

Fuente	G Ali	neación 🕞	Número 🕞	Estilos	Ce	ldas	Modificar
<i>f</i> _x =B11+C11							
J	К	L	Μ	N	0	P	Q
Liqu	iido	Vapo	or	Propano	Pentano		
f1(L)	f2(L)	f1(V)	f2(V)	[f1(L)-f1(V)]	[f2(L)-f2(V)]	Suma	Suma (x1+x2) Sum
2,049691754	2,774826878	3,038704506	0,321992072	-0,989012752	2,452834806	3,441847558	1,000
4,085691515	2,486766702	3,832384468	0,889944899	0,253307047	1,596821803	1,85012885	
6,136498145	2,21022894	5,158329657	1,942669592	0,978168488	0,267559349	1,245727837	
8,192628976	1,92875897	5,930710173	3,232152293	2,261918802	-1,303393322	3,565312125	
10,25130703	1,640809991	6,194759158	4,560914064	4,056547868	-2,920104073	6,976651941	
12,3189634	1,346109551	8,3760136	1,978441851	3,942949798	-0,632332301	4,575282098	
14,37695302	1,040405892	6,401466428	2,323775067	7,975486591	-1,283369174	9,258855765	
16,47614441	0,723151845	4,351613467	2,684481532	12,12453095	-1,961329687	14,08586063	
18,62853386	0,383812842	2,217665851	3,058702916	16,41086801	-2,674890074	19,08575809	
20,82848117	0	0	3,434273557	20,82848117	-3,434273557	24,26275473	
				67,84324597	-9,892476231	77,7357222	

	Suma (x1+x2)	Suma (y1+y2)	
j8	1,000	1,000	
5	1,000	1,000	
37	1,000	1,000	
25	1,000	1,000	
1	1,000	1,000	
8	1,000	1,000	
35	1,000	1,000	
33	1,000	1,000	
)9	1,000	1,000	
'3	1,000	1,000	
2			₽₽

Una vez calculados los valores de todas las celdas, podemos comenzar con el proceso de iteración haciendo click en Solver (Pestaña Datos). Se abrirá una pantalla como la de abajo:

Es <u>t</u> ablec	er objetivo:	\$P\$21			E
Para:	◯ <u>M</u> áx.	Mín	◯ <u>V</u> alor de:	0	
Cambian	ido <u>l</u> as celdas de	variables:			
					E
Sujeto a	las restriccione	s:			
				^	<u>A</u> gregar
					<u>C</u> ambiar
					Eliminar
					Restablecer todo
				~	<u>C</u> argar/Guardar
Con [®]	vertir variables	sin restricciones	s en no negativas		
Método	d <u>e</u> resolución:	G	RG Nonlinear	\sim	Opciones
Método	o de resolución				
Selecci motor I de Solv	one el motor GR LP Simplex para ver no suavizado	G Nonlinear par problemas de S os.	ra problemas de Solv Solver lineales, y sele	er no lineales suaviz ccione el motor Evol	ados. Seleccione el utionary para problemas

Nuestra objetivo es minimizar el valor de la última celda de la columna Suma, cambiando las composiciones x1 e y1 (x2 e y2 cambian debido a que están sujetas a la función x2/y2 = 1 – x1/y1 y fijando ciertas restricciones:

- Las fugacidades de la fase liquida deben ser iguales a las fugacidades de la fase vapor, ya que nos encontramos en el equilibrio.
- Las sumatorias de las composiciones deben ser iguales a 1

Parámetros de S	Solver	A Z K Borrar	* *
inte \$8\$11:\$8\$20;\$D	\$11:\$D\$20		plic
externos	Conexiones	Ordenar y filtrar	H

Jregar restriccion	,
R <u>e</u> ferencia de celda	Restricción:
\$J\$11:\$J\$20	📧 = 🗸 =\$L\$11:\$L\$20

R <u>e</u> ferencia de celda	Re	stricción:
\$K\$11:\$K\$20	i = 🗸 =	\$M\$11;\$M\$20

M Agregar restricción		П		×
R <u>e</u> ferencia de celda		Restric	ción:	
\$Q\$11:\$Q\$20	=	~ 1		1
Aceptar	Agre	gar	Cancela	ar

M	0	D		0	
Agregar restricción					- × -
Referencia de celda		Restri	icción:		
\$R\$11:\$R\$20	i	~ 1			1
					_
Aceptar	Agr	egar	(<u>C</u> ancelar	

netros u	C SOIVEI				
Es <u>t</u> ablece	er objetivo:	\$P\$21			
Para:	○ <u>M</u> áx.	Mín	◯ <u>V</u> alor de:	0	
Cambiand	do <u>l</u> as celdas de va	iables:			
\$B\$11:\$8	3\$20;\$D\$11:\$D\$20				
S <u>u</u> jeto a l	las restricciones:				
\$J\$11:\$J \$K\$11:\$	\$20 = \$L\$11:\$L\$2 \$20 = \$M\$11:\$M\$	0 20		^	<u>A</u> gregar
\$Q\$11:\$ \$R\$11:\$	Q\$20 = 1 R\$20 = 1				<u>C</u> ambiar
					Eliminar
					<u>R</u> establecer todo
				~	<u>C</u> argar/Guardar
Conv	ertir variables sin r	estricciones	s en no negativas		
Método d	l <u>e</u> resolución:	G	RG Nonlinear	\sim	Opciones
Método	de resolución				
Seleccia motor Li de Solve	ne el motor GRG N P Simplex para prol er no suavizados.	onlinear pa olemas de S	ra problemas de Solve Solver lineales, y selec	er no lineales suaviza ccione el motor Evolu	idos. Seleccione el tionary para problema
<u>Ayu</u>	da			<u>R</u> esolver	Cerrar

Apretamos Resolver y una vez que converge Excel nos muestra el siguiente resultado:

Solver ha convergido a la	solución actual.	Se cumplen	
todas las restricciones.		Info	mes
Oconservar solución de S	Solver	Re Co Lín	sponder nfidencialidad nites
O <u>R</u> estaurar valores origin	nales		
□ Volv <u>e</u> r al cuadro de di Solver	álogo de paráme	tros de 🗌 li	nformes de esq <u>u</u> ema
Aceptar <u>C</u> an	celar		Gua <u>r</u> dar escenario
Solver ha convergido a la s	solución actual. Se	e cumplen todas	las restricciones.
Solver realizó 5 iteracione significativa. Intente usar	es para las que e un valor de conv	l objetivo no se r ergencia más pe	novió de manera queño u otro punto de

Esto significa que las restricciones que pusimos hicieron que el Solver converja en un resultado que las cumple. Por lo tanto deberían obtener un resultado como el que se muestra debajo:

	А	В	С	D	E	
1		Propano(1)	n-Pentano (2)			
2	Tc(K)	369,8	469,7		R (bar.cm3/(mol.K))	
3	Pc(bar)	42,5	33,7		Temperature (K)	
4	omega	0,152	0,252			
5	kij	0,0	0,0			
6		0,0	0,0			
7						
8						
9		Liq	uido		Vapor	
10	Presión (bar)	x1 x2		y1	y2	
11	3,5033	0,006	0,994	0,037	0,963	1
12	5,0501	0,082	0,918	0,352	0,648	1
13	8,0002	0,222	0,778	0,620	0,380	0
14	11,0166	0,358	0,642	0,748	0,252	0
15	14,0047	0,4835	0,516	0,8236	0,176	0
16	17,1052	0,6059	0,394	0,8762	0,124	(
17	19,8736	0,7076	0,292	0,9114	0,089	0
18	23,0898	0,8162	0,184	0,9443	0,056	-(
19	26,4286	0,9165	0,084	0,9734	0,027	-(
20	28,9982	0,9836	0,016	0,9944	0,006	-(
21						

Una vez que obtenemos los valores correctos de las composiciones tanto del líquido como del vapor podemos graficar los resultados. Para ello, seleccionamos Insertar Gráfico > Dispersión > Dispersión con líneas rectas y marcadores.

		\mathcal{N}	٢	=		12	\bigcirc	<u>i</u>
ra	Columna	Línea	Circular	Barra	Área	Dispersión •	Otros	Línea Columna +
			G	ráficos		Dispersió	ı	5
	D		E			• • • • • •	X	
		R (ba Tei	ar.cm3/(i nperatu	mol.K <u>)</u> re (K))	X	\searrow	
						ili <u>T</u> odo	s los tipo	os de gráfico

Luego seleccionamos la opción Seleccionar Datos > Agregar, que nos permite armar las curvas de líquido y vapor en un mismo gráfico.

			-			L				
Can	biar tipo Guardar como	Cambiar entre Se	eleccionar datos			\times		7		
uc	Tino	Datos	uatos	Diseños de o	nráfico			Estilos de diseño		
	F21 -	6 £		biscilos de g	granco			Estilos de diserio		
	F51 +	x		-		-				
	A	В	C	D	E	F	G	H		
1		Propano(1)	n-Pentano (2)							
2	Ic(K)	369,8	469,7		R (bar.cm3/(mol.K))	83,14				
3	Pc(bar)	42,5	33,7		Temperature (K)	350				
4	omega	0,152	0,252							
5	kij	0,0	0,0			Seleccionar origen de l	datos		2	×
6		0,0	0,0			Seleccional origen act				
7						Rango de datos del gr	áfico:			1
8										
9		Liq	uido		Vapor					
10	Presión (bar)	x1	x2	y1	y2			<u>C</u> ambiar fila/columna		f1
11	3,5033	0,006	0,994	0,037	0,963				. V	26
12	5,0501	0,082	0,918	0,352	0,648	Entradas de le <u>v</u> enda (Se	eries)	Etiquetas del e	je <u>h</u> orizontal (categoria)	1004
13	8,0002	0,222	0,778	0,620	0,380	📔 Agregar 🛛 🗹 🗉	ditar 🗙 <u>Q</u> uitar 4	🔺 💌 📝 E <u>d</u> itar		5770
14	11,0166	0,358	0,642	0,748	0,252					346
15	14,0047	0,4835	0,516	0,8236	0,176)21;
16	17,1052	0,6059	0,394	0,8762	0,124					,42
17	19,8736	0,7076	0,292	0,9114	0,089					1,50
18	23,0898	0,8162	0,184	0,9443	0,056					,76
19	26,4286	0,9165	0,084	0,9734	0,027					
20	28,9982	0,9836	0,016	0,9944	0,006	Coldan og iltan v varía			Acostar	ancolar 47
21							5		Aceptar	
22										

Cada vez que hacemos click en Agregar estamos introduciendo una nueva serie, es decir, una nueva curva. La serie debe ser nombrada según corresponda, Liquido o Vapor. Las variables independientes siempre van a ser las composiciones y la variable dependiente la presión.

Una vez introducidas ambas series, hacemos click en Aceptar y obtenemos la gráfica de nuestro sistema.

⇒ Parte B

Si cambiamos los valores de los párametros de interacción binaria nuestro ejercicio cambia debido a que las composiciones que obtuvimos en la Parte A no van a ser las mismas. Para poder ver cómo afecta el parámetro de interacción binaria debemos repetir todos los pasos de la primera parte, cambiando los valores de nuestra matriz.

ſ.	A	В	L L	
		Propano(1)	n-Pentano (2)	
	Tc(K)	369,8	469,7	
	Pc(bar)	42,5	33,7	
	omega	0,152	0,252	
	kij	0,0	0,1	
		0,1	0,0	

Si resuelven el ejercicio nuevamente y graficas los resultados obtenidos juntos con los de la Parte A, van a poder visualizar el cambio en los diagramas. Por ejemplo, si utilizamos un Kij=0,01 obtendremos la siguiete gráfica:

