Objetivos:

- 1. Seleccionar un material en función de sus características y la aplicación a la que se destinará.
- 2. Especificar el tratamiento de superficie adecuado para proteger y aumentar la vida útil de diferentes materiales.
- 3 Aplicar criteriosamente las normas y ensayos correspondientes a la selección, diseño y fabricación de envases y embalajes.
- 4 Utilizar adecuadamente los distintos tipos de adhesivos industriales.

Corrosión: DETERIORO DE LOS MATERIALES DEBIDO A REACCIONES CON EL MEDIO CIRCUNDANTE

La Industria al revés: se lleva aproximadamente 4% PBI de un país. Sólo genera pérdidas. Trabaja 24x7. No hace paro.

Argentina: PBI 2019 = u\$s 307.256 millones → Corrosión = u\$s 12.290 millones

Todos los materiales:

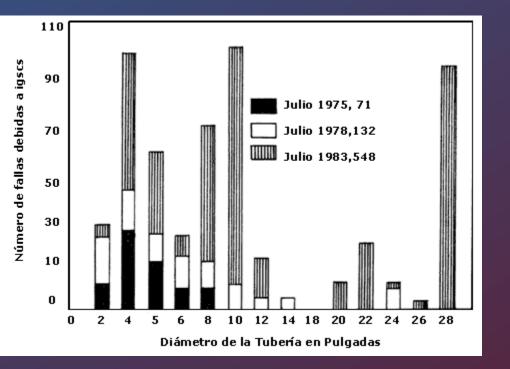
Polímeros: UV, ácidos y álcalis, solventes, efectos mecánicos

Cerámicos: Químicas, efectos mecánicos-ambientales

Metales: Químicas y electroquímicas, efectos mecánicos

PROCESO PRODUCTIVO

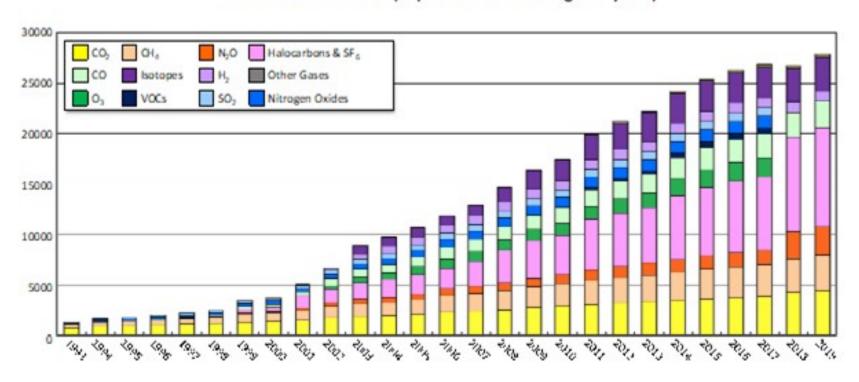
Historia:


1822 – botadura primer barco casco de hierro metálico Los estudios comenzaron en 1835 (Publicación sobre ensayos de corrosión de aleaciones para fabricación de barcos en HCl)

Fuente: Corrosión y Degradación de Materiales (E. Otero Huerta) –Introducción a la Ciencia e Ing. de los Materiales (W. Callister) Fuente: Introducción a la Ciencia e Ing. de los Materiales (W. Callister) – Ciencia e Ingeniería de los Materiales (Askeland)

Consideraciones generales sobre corrosión/degradación:

- Mejores técnicas de protección, tendencia a incremento en pérdidas, aumento agresividad ambiental.
- Mejores materiales >>> mayor probabilidad de falla por degradación



n° de fallas en tuberías de acero debido a grietas

Consideraciones generales sobre corrosión/degradación:

Number of dataset (reported station x gas x year)

Consideraciones generales sobre corrosión/degradación:

- Pérdidas:
 - Interrupciones de proceso
 - Pérdidas de producto fugas rechazos
 - Contaminación de producto alimento farmacéutica
 - *Sobredimensionamiento márgenes de seguridad
 - Rendimiento calefacción conducción
 - Accidentologia
- *Dependiente de la tremperatura, humedad y composición ambiental
- Gobernada por aspectos termodinámicos y cinéticos

CORROSIÓN - OXIDACIÓN

Según el mecanismo

Diseño Prevención Corrosión a alta temperatura / Oxidación

Electroquímica

Corrosión uniforme

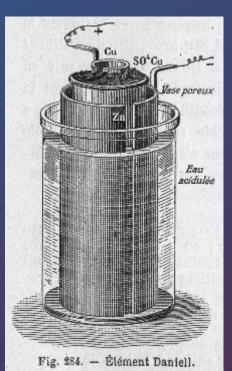
Corrosión

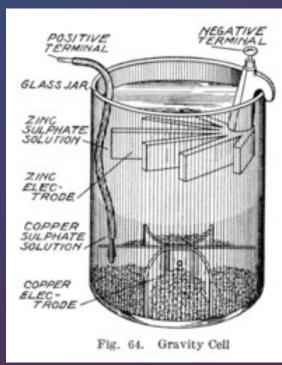
Según la morfología

Identificación Gravedad -Prevención

Corrosión localizada

Selectiva -Placas
Picadura
Resquicio
Bajo tensión
Intergranular

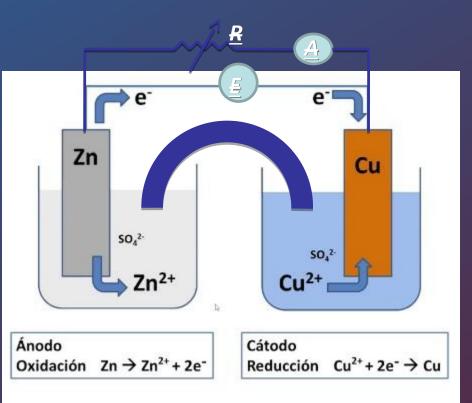



Corrosión

Mecanismo electroquímico

Pila de Daniell

La pila Daniell o celda de Daniell, también llamada celda de gravedad o celda de pata de gallo fue inventada en 1836 por John Frederic Daniell, que era un químico británico y meteorólogo. Esta pila supuso una gran mejora sobre la pila voltaica que fue la primera celda galvánica desarrollada.



Corrosión

Mecanismo electroquímico
Pila de Daniel**i ermodinámica**

$$\Delta G = -n F E = -n F \Delta V$$

$$M^{+n} + ne^{-} \iff M \mid V1$$

$$M \iff M^{+n} + ne^{-} \mid V2$$

$$2H^{+} + 2e^{-} \iff H_{2}$$

$$O_{2} + 4H^{+} + 4e^{-} \iff 2H_{2}O$$

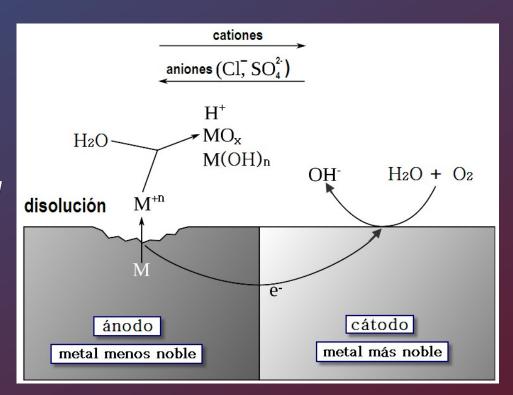
$$O_{2} + 2H_{2}O + 4e^{-} \iff 4(OH^{-})$$

$$\Delta V = (V_{2}^{0} - V_{1}^{0}) - \frac{RT}{n \partial \widetilde{S}} \ln \frac{[M_{1}^{n+}]}{[M_{2}^{n+}]}$$

Potenciales estándar de reducción V1= potencial catódico V2= potencial anódico

Corrosión

Conclusión Obvia:

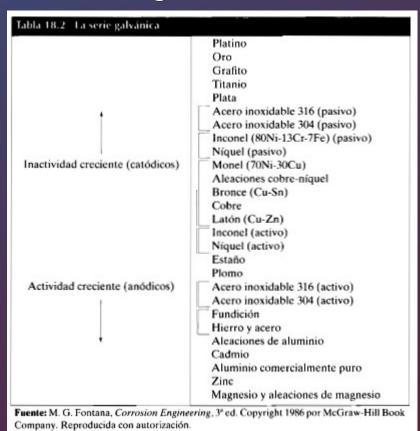

Pieza: dos metales distintos con distintos potenciales estándar → pila galvánica → uno se corroe

Conclusión NO TAN Obvia:

Pieza metal único con "un único" potencial estándar → pila galvánica Pila galvánica → él se corroe

Micropilas

Macropilas



Serie electroquímica

Tabla 18.1 La serie fem estándar Potencial de electrodo estándar Reacciones del electrodo V° (V) $Au^{3+} + 3e^{-} \rightarrow Au$ +1,420 $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ +1.229 $Pt^{2+} + 2e^- \longrightarrow Pt$ $\sim +1.2$ $Ag^+ + e^- \longrightarrow Ag$ +0.800Inactividad $Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$ +0,771creciente $O_2 + 2H_2O + 4e^- \longrightarrow 4(OH^-)$ +0.401(catódicos) +0.340 $2H^+ + 2e^- \longrightarrow H_2$ 0 $Pb^{2+} + 2e^{-} \longrightarrow Pb$ -0.126 $Sn^{2+} + 2e^{-} \longrightarrow Sn$ -0.136 $Ni^{2+} + 2e^{-} \longrightarrow Ni$ -0.250 $Co^{2+} + 2e^{-} \longrightarrow Co$ -0.277 $Cd^{2+} + 2e^{-} \longrightarrow Cd$ -0.403 $Fe^{2+} + 2e^{-} \longrightarrow Fe$ -0.440 $Cr^{3+} + 3e^{-} \longrightarrow Cr$ -0.744Actividad $Zn^{2+} + 2e^{-} \longrightarrow Zn$ -0.763creciente $Al^{3+} + 3e^{-} \longrightarrow Al$ -1,662(anódicos) $Mg^{2+} + 2e^{-} \longrightarrow Mg$ -2.363 $Na^+ + e^- \longrightarrow Na$ -2,714-2,294 K+ +e- → K

Serie galvánica

Termodinámicamente

Habrá corrosión si:

- *Energía libre de Gibbs <0</p>
 - Depende de:
 - 7
- Depende del E del sistema cátodo-ánodo
 - E depende del pH y pO₂

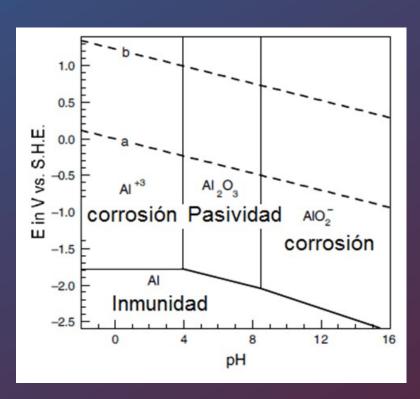
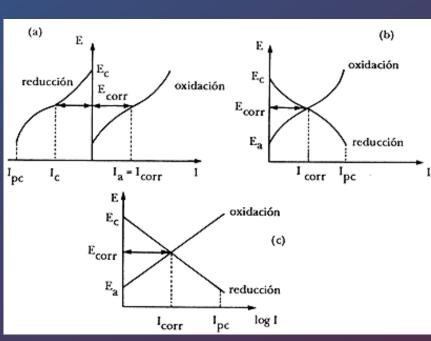

Velocidad de corrosión???

Diagrama de Pourbaix o E-pH o pe-pH

Relaciona áreas estables e inestables de un sistema electroquímico con coordenadas E y pH

Línea horizontal: no depende del pH

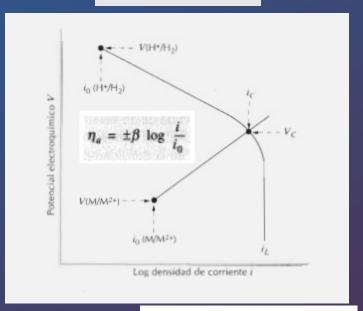

Línea vertical: tránsito entre especies sin cambio de electrones

NO incorpora aspectos cinéticos

Polarización

Cinética y polarización – Diagrama de EVANS

Velocidad de corrosión ← Intensidad de corriente


$$R (mol/s) = I / nF$$

$$r (mol /s-cm^2) = i / nF$$

$$I = (Ec-Ea) / R$$

$$r_{\rm red} = r_{\rm oxid} = \frac{i_0}{n\mathcal{F}}$$

$$\eta_c = \frac{2.3 \ RT}{n_i \tilde{y}} \log \left(1 - \frac{i}{i_L}\right)$$

Cinética y polarización — Diagrama de EVANS

No necesarios:

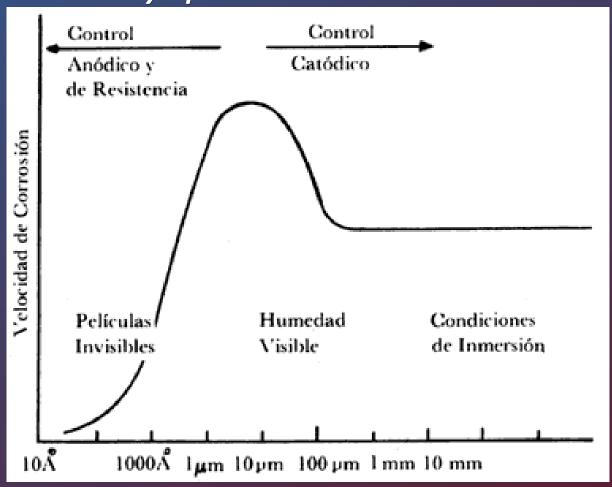
Linealidad de las curvas

*Igualdad de las pendientes

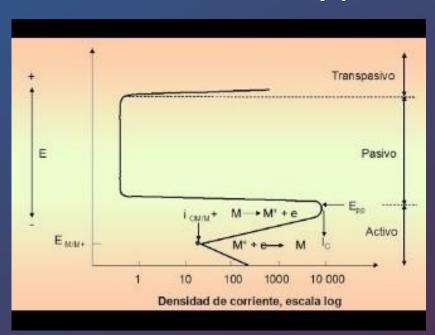
Convergencia hacia potencial común de reacción

Polarización por activación:

Potencial eléctrico extra necesario para vencer la barrera de activaciónde las reacciones electroquímicas involucradas para que la reacción se de a velocidades significativas


Polarización por difusión o concentración: Debida a concentraciones locales altas o bajas en la vecindad del electrodo

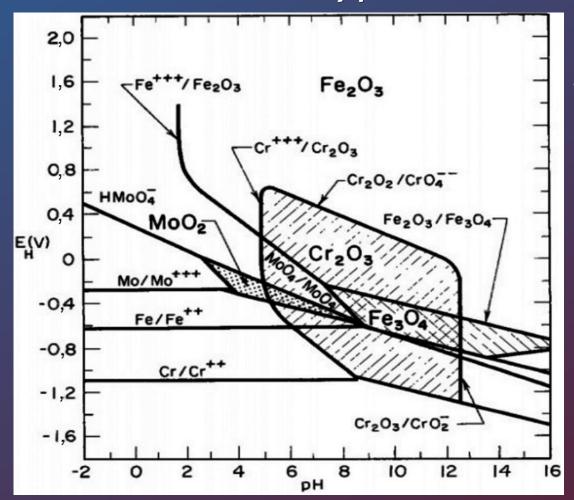
E corr = (RT / nF) In (Cliq/Cvec)
Cliq: en el seno del electrolito (promedio – la medible)
Cvec: en la película próxima al electrodo


 i_0 = densidad de corriente de intercambio

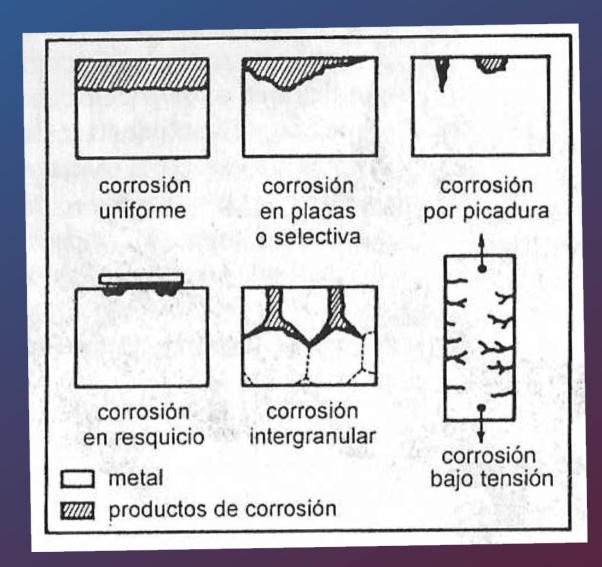
Humedad ambiente y tipo de control de la corrosión atmosférica


Cinética y polarización – PASIVACIÓN

Propiedad de permanecer inertes aunque termodinámica prediga actividad


Formación capa de óxido compacta aislante de bajo espesor

No permite intercambio de cargas


Cinética y polarización – PASIVACIÓN

Caso: Cromo >12% aleado con Hierro

Aceros inoxidables

Corrosión

Tipos según morfología

Corrosión uniforme

- Se produce a la misma velocidad en toda la superficie
- La superficie es electroquímicamente homogénea
- El agente corrosivo tiene acceso a toda la superficie (ambientes marinos, industriales, urbanos, rural)
- Adelgazamiento progresivo
- Falla previsible
- *Controlable: pintado, protección catódica, recubrimientos metalúrgicos



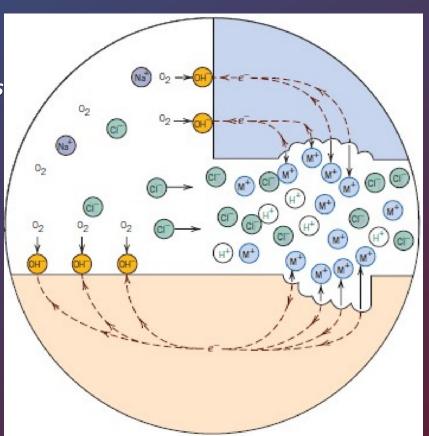
Corrosión en placas o selectiva

- Se produce a distintas velocidades en zonas de la superficie
- *Favorecida en materiales multifase donde una de las fases es mas susceptible al agente corrosivo
- Intermedio entre uniforme y picadura
- *Controlable: similar a corr. uniforme

Corrosión por picaduras

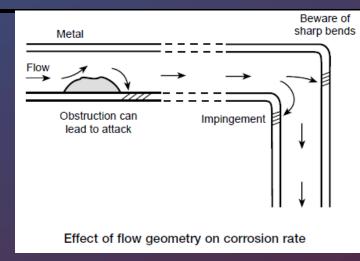
- Se produce en forma localizada
- Difícil de detectar hasta que ocurre la falla
- Favorecida por inhomogeneidad superficial y despasivación zonal
- Emparentada corr. Resquicio
- Alta velocidad favorecida por baja relación superficies anódica a catódica
- ^a Alta densidad de corriente localizada en la zona

anódica



Corrosión por resquicio

- Por aireación diferencial y otras formas de pilas de concentración
- Acción bacteriana, despasivación
- Acumulación de material deformación plástica zonal, mayor aislación (óxidos)
- Para: $O_2 + 2H_2O + 4e^{-} \rightarrow 4OH^{-}$ $E = 0,439 + 0,015 \text{ Log PO}_2 - 0,06 \text{ pH}$
- ¿Cuál es la zona anódica? ¿Rica o pobre en oxígeno?
- Cañerías y elementos enterrados
- Soluciones: Diseño, secuestrantes de oxígeno, ajuste de pH, control temperatura, usar selladores, protección superficial, prot. catódica.



Corrosión por erosión

- En arreglos con fluidos sometidos a velocidades elevadas o cambios bruscos de velocidad
- Presencia de partículas
- Capa límite , control catódico
- Cavitación

Baja: Latón 4 m/s Media: Acero al carbono 6 m/s Alta: Acero inoxidable, Monel, aleaciones a base de Ni, Titanio 10 m/s

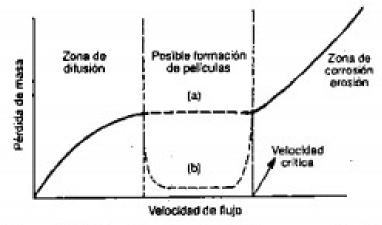
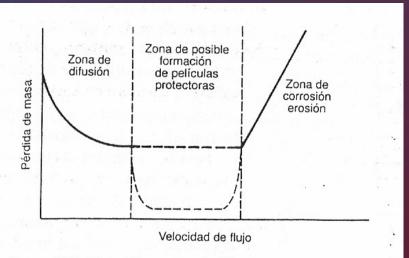
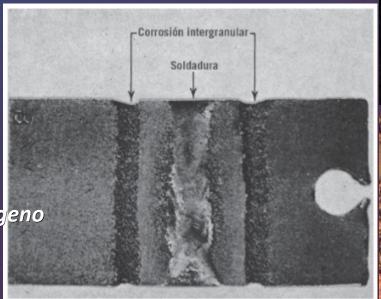
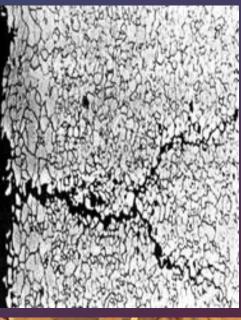
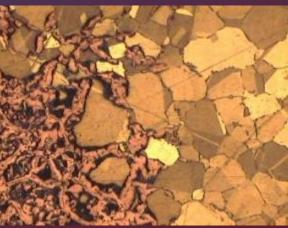


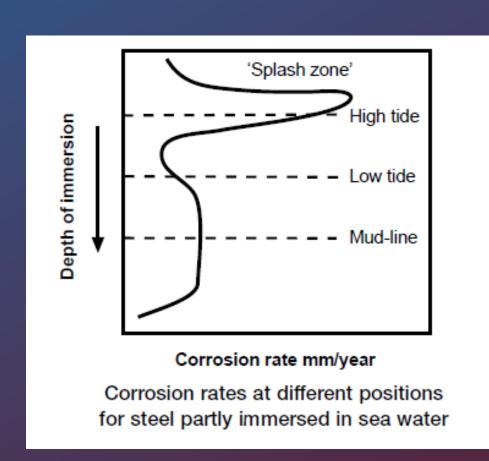
Figura 11.5. Relación entre pérdida de masa y velocidad de flujo cuando el fluido no transporta sólidos en suspensión.

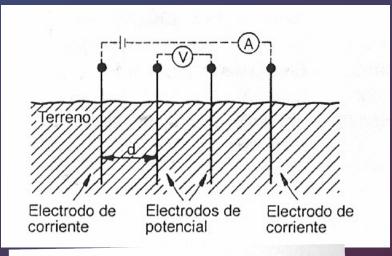




Figura 11.8. Relación entre pérdida de masa y velocidad de flujo cuando el fluido transporta sólidos en suspensión.




Para investigar:


- -Corrosión por fricción
- -Intergranular
- -Filiforme
- -Bajo tensión
- -Corrosión fatiga
- -Eliminación selectiva
- -Fragilización por hidrógeno


Estructuras enterradas

CUADRO 15.3

Clasificación de los suelos en cuanto a su agresividad en función de la resistividad que presentan.

Resistividad	Características corrosivas del suelo			
$< 900 \Omega.cm$ $900-2.300 \Omega.cm$ $2.300-5.000 \Omega.cm$ $5.000-10.000 \Omega.cm$ $> 10.000 \Omega.cm$	Muy corrosivo Bastante corrosivo Moderadamente corrosivo Ligeramente corrosivo Muy ligeramente corrosivo			

$$\delta_{ ext{(resistividad)}} =$$

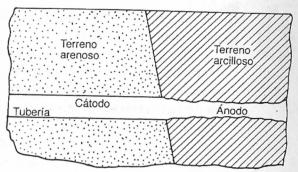


Figura 15.9. Representación esquemática de una tubería enterrada en contacto con suelos de diferente estructura y composición. Si el terreno es conductor puede funcionar el mecanismo de corrosión por macropilas.

$$VPC = \frac{KW}{\rho A t}$$

	K	W	×	Α	t
mm/ año	87,6	mg	g/cm3	cm2	horas
mpa	534	mg	g/cm3	pl2	horas

Corrosión en distintas atmósferas

CUADRO 15.1.

Datos de penetración media por corrosión en mm para diferentes materiales metálicos en contacto con distintos tipos de atmósferas.

Atmósfera	Penetración media (mm)							
	Acero dulce	Acero palinable	Acero de alto límite elástico (HSLA)	Cinc	Cobre	Aluminio		
Rural	40-100	20-50	8-20	4-15	5-8	0,25-0,35		
Jrbana	85-300	40-150	20-70	10-25	7-14	0,37-0,65		
ndustrial	100-350	40-175	20-80	20-80	10-20	1,85-10		
Marina	100-400	50-200	20-90	10-60	6-18	0,76-15		

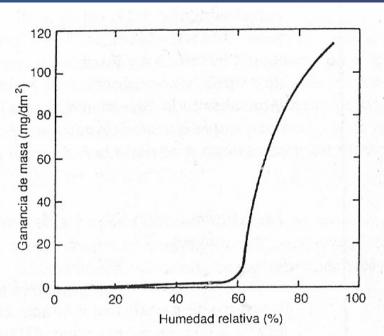


Figura 15.2. Influencia de la humedad relativa de la atmósfera en la velocidad de corrosión del acero en presencia de 0,01% en peso de SO₂ (tomado de Jones, D. A.: *Principles and Prevention of Corrosion*).

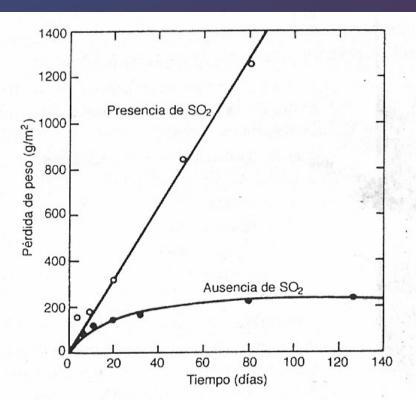
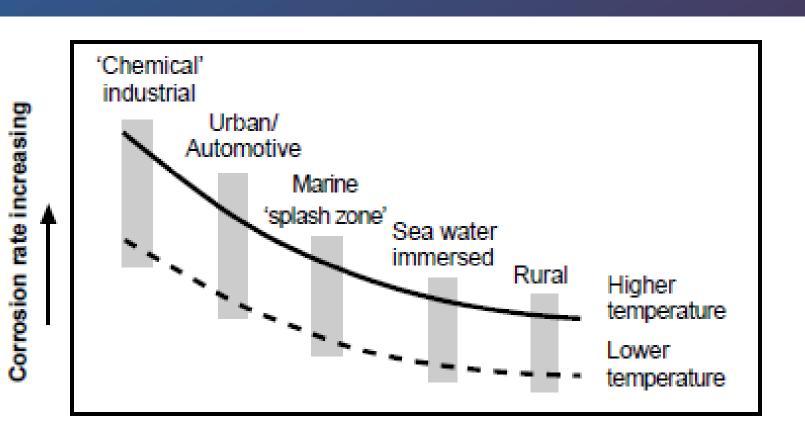



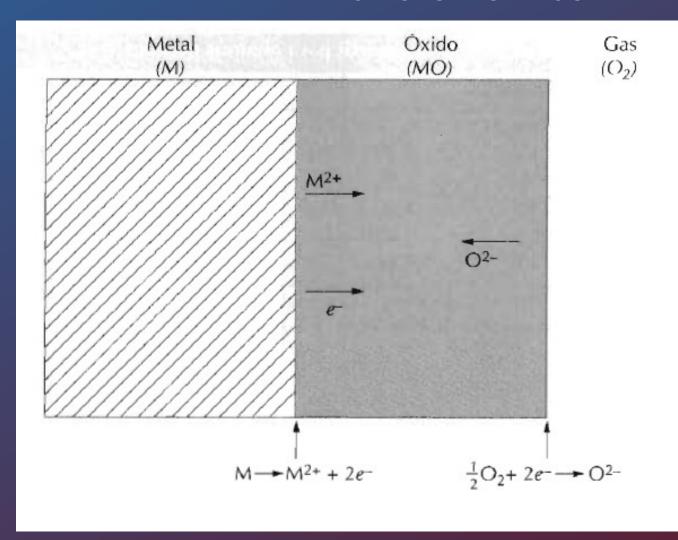
Figura 15.3. Comparación entre las velocidades de corrosión atmosférica en ausencia y en presencia de SO₂ (tomado de Jones, D. A.: *Principles and Prevention of Corrosion*).

Corrosion rates and influence of aggresive environments

Corrosión y Degradación de Materiales (E. Otero Huerta)

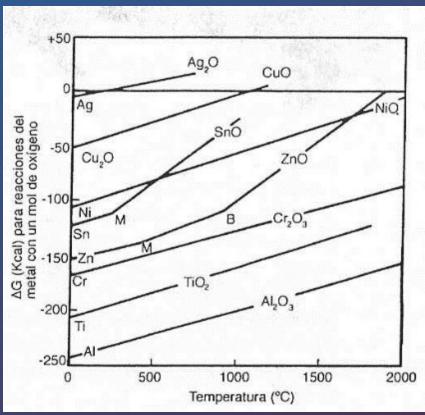
HASTA ACÁ:

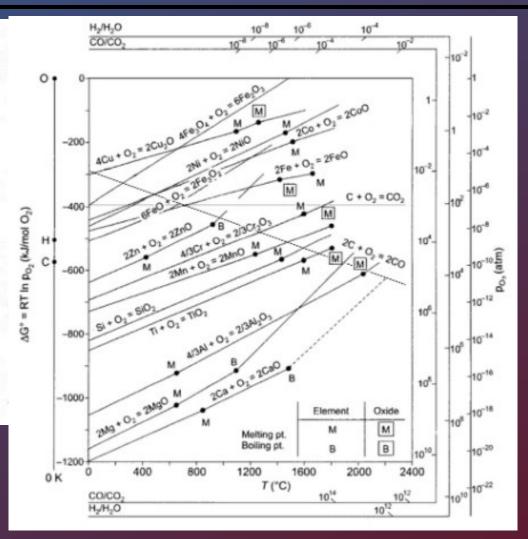
CAPÍTULOS 1 A 13 INCLUIDOS


A temperaturas elevadas (>100 – 150°C) OXIDACIÓN

- No existe electrolito
- Interface metal-gas
- El metal reacciona con un receptor de electrones para formar un compuesto
- *Los productos de reacción se producen y depositan sobre el metal directamente
 - Sigue habiendo circulación de electrones, iones y especies gaseosas
- °El mas común de los agentes produce oxidación con formación de óxidos $ightarrow {\cal O}_2$
 - Hay otros agentes comunes como SULFURO, CO,, CLORURO
 - La morfología suele ser Homogénea

MECANISMO DE OXIDACIÓN




COMO EN LACORROSIÓN EXISTEN CORRIENTES

Se establece a través de la capa de óxido

Control y limitación de velocidad de degradación

TERMODINÁMICAMENTE Diagrama de Ellingham $2Me+O_2 \rightarrow 2MeO$ $\triangle G = \triangle H-T \triangle S$ $\triangle S = Scu_2O - [Scu + 1/2 SO_2]$

Entropía del gas es mayor que la de cualquier producto sólido Mezcla de gases: competencia de reacciones según T y Pres parcial especies

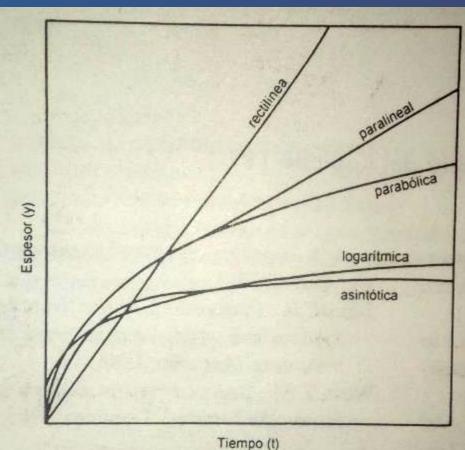


Figura 19.1. Trazado general de las leyes cinéticas más habituales a las que se ajustan los procesos de corrosión a alta temperatura.

CINÉTICAMENTE

$$\delta y/\delta t = k \rightarrow y = k*t$$

$$\delta y/\delta t = -1/2 k*t \rightarrow y^2 = k*t$$

$$\delta y/\delta t = k/t \rightarrow y = K \ln(t)$$

$$\delta y/\delta t = k/(e^{y/k}) \rightarrow y = k(1-e^k)$$

Y=espesor o masa/área

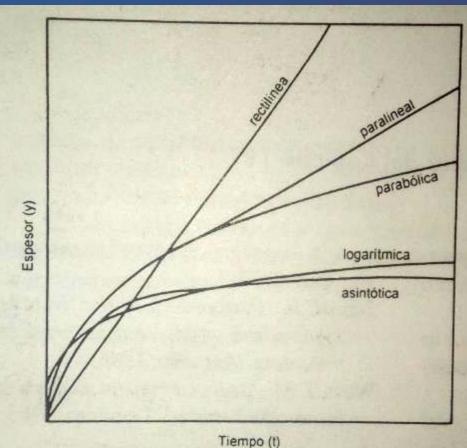


Figura 19.1. Trazado general de las leyes cinéticas más habituales a las que se ajustan los procesos de corrosión a alta temperatura.

CINÉTICAMENTE

Características físico-mecánicas

Características estequiométricas y electrónicas

Temperatura

Presencia de campo eléctrico (dicapa-óxido y óxido-atm)

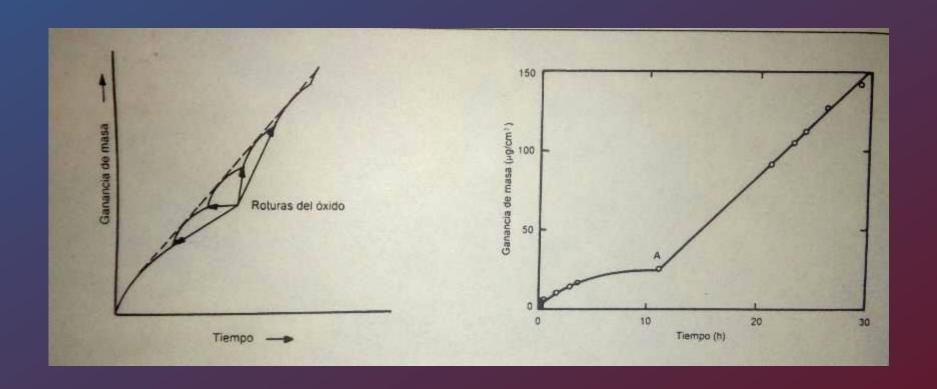
Estado físico y estado de agregación de los Óxidos

CUADRO 19.1. .

Temperaturas de fusión en°C de algunos óxidos, sulfuros y cloruros (d: se descompone, s: sublima).

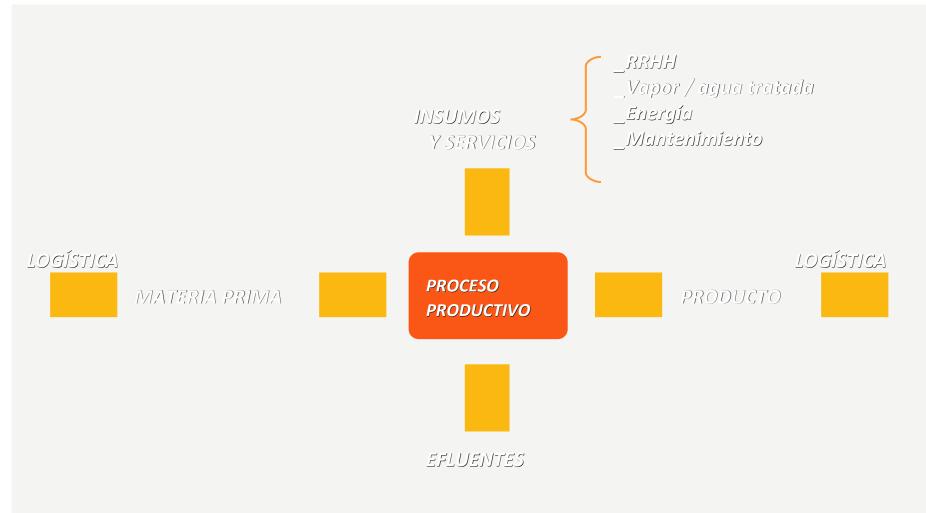
Metal		Óxido		Sulfuro		Cloruro
Al	Al ₂ O ₃	2020	Cu ₂ S		AICI ₃	s. 178
Cu	Cu ₂ O	1230	inestable	1130	CuCl ₂	620
Fe	FeO	1371	FeS	1190	FeCl ₂	670
Cr	Cr ₂ O ₃	2280	Cr ₂ S ₃	1150	CrCl ₂	824
Ni	NiO 3	1960	Ni ₂ S ₃	790	NiCl ₂	s. 973
V	V ₂ O ₅	670	V ₂ S ₃	d. 600	VCl	d. 149
Mo	MoO ₃	795, s. 1155	MoS,	s. 450	MoCl ₅	194
W	WO ₂	1270	WS ₂	d.1250	WCI ₅	d. 276

Características físico-mecánicas de los Óxidos


- Conductividad eléctrica Ox
 - Porosidad del Ox
 - *Coef. Dilatación Me-Ox
- Resistencia a la tracción Ox

$$A_o\delta_{\!\scriptscriptstyle M}$$

Relación P-B = $A_{\!\scriptscriptstyle M}\delta_{\!\scriptscriptstyle O}$


Tabla 18.3	Relación de Pilling-Bedworth para algunos metales						
Protectora			No protectora				
Ве	1,59	Fe	1,77	Li	0,57	Mo	3,40
Cu	1,68	Co	1,99	Na	0,57	Nb	2,61
Al	1,28	Ni	1,52	K	0,45	Sb	2,35
Si	2,27	Pd	1,60	Ag	1,59	W	3,40
Cr	1,99	Pb	1,40	Cd	1,21	Ta	2,33
Mn	1,79	Ce	1,16	Ti	1,95	U	3,05

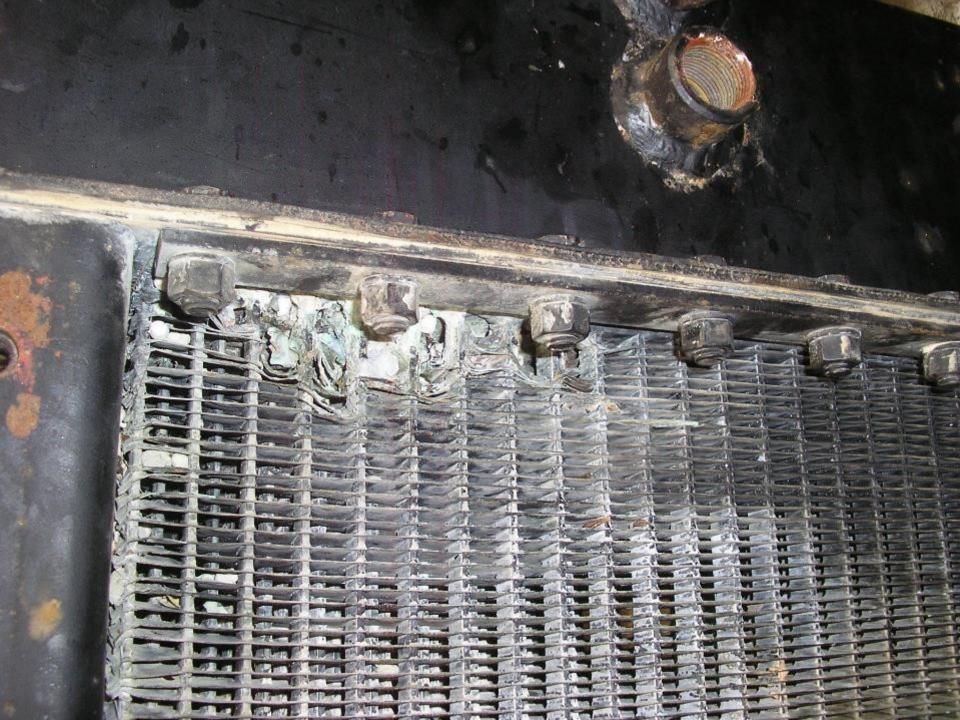
Tensión de compresión depende del espesor

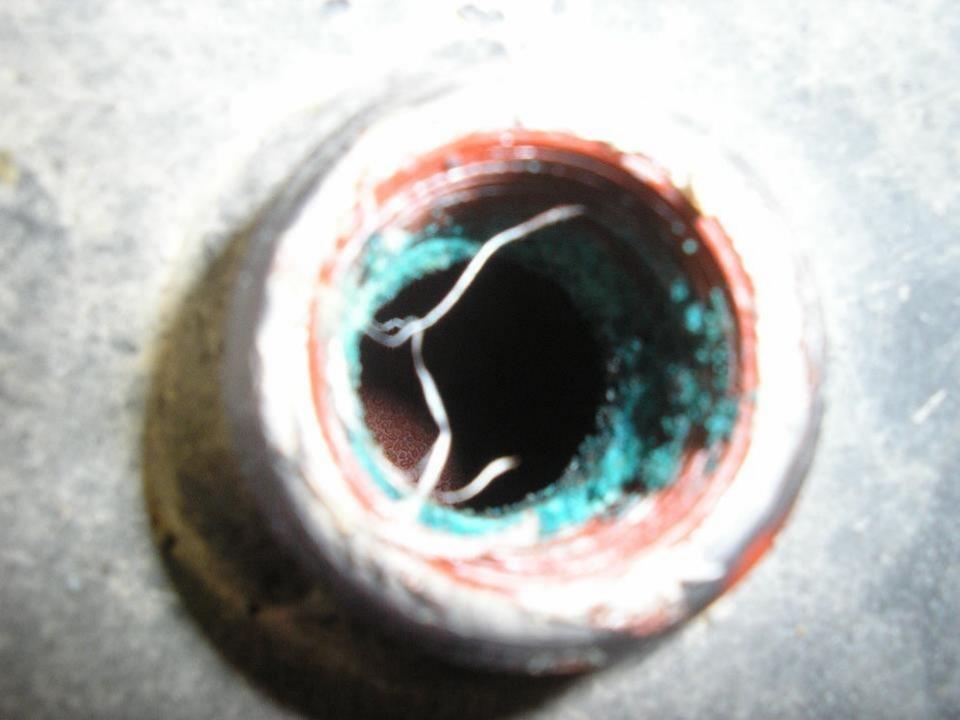
Espesor crítico de desprendimiento

Corrosión y Degradación de Materiales (E. Otero Huerta)

HASTA ACÁ:

CAPÍTULOS 18 Y 19





La vida del ánodo puede calcularse de la siguiente manera:

Por ejemplo, la vida de un ánodo de Zn de 14 kg de peso, capaz de suministrar una intensidad de corriente de 0.1 A, será:

teniendo en cuenta que un año tiene 8 760 horas

$$0.094 \frac{\text{A-año}}{\text{kg}}$$

Table 3 Properties of sacrificial anodes

Anode material	Density g cm ⁻³	Potential volts Cu/CuSO ₄	Amp-hrs per kg	Typical anode current density A m ⁻²
Zn	7.1	-1.10	780	0.5 - 2
Al	2.7	-1.15	2700	0.6 - 2.5
Mg	1.7	-1.55	1230	1.5 – 5.6

Table 5 Current densities required to protect steel

Environment	Current density A m ⁻²
Acidic solutions	350 – 500
Saline solutions	0.3 - 10
Sea water	0.05 - 0.15
Saline mud	0.025 - 0.05

Table 4 Potential required for cathodic protection

Metal	Potential (Cu/CuSO ₄)		
Steel	-850 mV		
Steel (sulphate reducing bacteria)	-950 mV		
Copper alloys	-500 to -650 mV		
Lead	-600 mV		
Aluminium	-950 to -1200 mV		